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Enter ARTIQ

Advanced Real-Time Infrastructure for Quantum physics
• High performance — nanosecond resolution, hundreds of ns latency
• Expressive — describe algorithms with few lines of code
• Portable — treat hardware, especially FPGA boards, as commodity
• Modular — separate components as much as possible
• Flexible — hard-code as little as possible



Define a simple timing language

trigger.sync() # wait for trigger input
start = now() # capture trigger time
for i in range(3):

delay(5*us)
dds.pulse(900*MHz, 7*us) # first pulse 5 µs after trigger

at(start + 1*ms) # re-reference time-line
dds.pulse(200*MHz, 11*us) # exactly 1 ms after trigger

• Written in a subset of Python
• Executed on a CPU embedded on a FPGA (the core device)
• now(), at(), delay() describe time-line of an experiment
• Exact time is kept in an internal variable
• That variable only loosely tracks the execution time of CPU instructions
• The value of that variable is exchanged with the RTIO fabric that does

precise timing



Convenient syntax additions

with sequential:
with parallel:

a.pulse(100*MHz, 10*us)
b.pulse(200*MHz, 20*us)

with parallel:
c.pulse(300*MHz, 30*us)
d.pulse(400*MHz, 20*us)

• Experiments are inherently parallel: simultaneous laser pulses, parallel
cooling of ions in different trap zones

• parallel and sequential contexts with arbitrary nesting
• a and b pulses both start at the same time
• c and d pulses both start when a and b are both done (after 20 µs)
• Implemented by inlining, loop-unrolling, and interleaving



Physical quantities, hardware granularity
n = 1000
dt = 1.2345*ns
f = 345*MHz

dds.on(f, phase=0) # must round to integer tuning word
for i in range(n):

delay(dt) # must round to native cycles

dt_raw = time_to_cycles(dt) # integer number of cycles
f_raw = dds.frequency_to_ftw(f) # integer frequency tuning word

# determine correct phase despite accumulation of rounding errors
phi = n*cycles_to_time(dt_raw)*dds.ftw_to_frequency(f_raw)

• Need well defined conversion and rounding of physical quantities (time,
frequency, phase, etc.) to hardware granularity and back

• Complicated because of calibration, offsets, cable delays, non-linearities
• No generic way to do it automatically and correctly
• → need to do it explicitly where it matters



Invite organizing experiment components and code reuse

class Experiment:
def build(self):

self.ion1 = Ion(...)
self.ion2 = Ion(...)
self.transporter = Transporter(...)

@kernel
def run(self):

with parallel:
self.ion1.cool(duration=10*us)
self.ion2.cool(frequency=...)

self.transporter.move(speed=...)
delay(100*ms)
self.ion1.detect(duration=...)



RPC to handle distributed non-RT hardware

class Experiment:
def prepare(self): # runs on the host

self.motor.move_to(20*mm) # slow RS232 motor controller

@kernel
def run(self): # runs on the RT core device

self.prepare() # converted into an RPC

• When a kernel function calls a non-kernel function, it generates a RPC
• The callee is executed on the host
• Mechanism to report results and control slow devices
• The kernel must have a loose real-time constraint (a long delay) or

means of re-synchronization to cover communication, host, and device
delays



Kernel deployment to the core device

• RPC and exception mappings are generated
• Constants and small kernels are inlined
• Small loops are unrolled
• Statements in parallel blocks are interleaved
• Time is converted to RTIO clock cycles
• The Python AST is converted to LLVM IR
• The LLVM IR is compiled to OpenRISC machine code
• The OpenRISC binary is sent to the core device
• The runtime in the core device links and runs the kernel
• The kernel calls the runtime for communication (RPC) and interfacing

with core device peripherals (RTIO, DDS)



Higher level features

• Device management: drivers, remote devices, device database
• Parameter database

e.g. ion properties such as qubit flopping frequency
• Scheduling of experiments

e.g. calibrations, queue
• Archival of results (HDF5 format)
• Graphical user interface

run with arguments, schedule, real-time plotting



Short-term hardware support

• Core device: Papilio Pro, Pipistrello, KC705
• High speed DDS with AD9858 and AD9914

(direct core device, < 25 channels)
• Waveform generation: PDQ (NIST), PXI6733
• Lab Brick Digital Attenuators
• Novatech 409B DDS
• Thorlabs motor controllers



http://m-labs.hk/artiq

• Public mailing list (with archives)
• Full source code, BSD licensed
• Design applicable beyond ion trapping (superconducting qubits, neutral

atoms...)

Thanks to Robert Jördens, Joe Britton, Daniel Slichter and other members of
the NIST Ion Storage Group for their support in developing ARTIQ.
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